An optimal control strategy and Grünwald-Letnikov finite-difference numerical scheme for the fractional-order COVID-19 model
نویسندگان
چکیده
In this article, a mathematical model of the COVID-19 pandemic with control parameters is introduced. The main objective study to determine most effective for predicting transmission dynamic using deterministic variables. For purpose, we introduce three variables reduce number infected and asymptomatic or undiagnosed populations in considered model. Existence necessary optimal conditions are also established. Grünwald-Letnikov non-standard weighted average finite difference method (GL-NWAFDM) developed solving proposed system. Further, prove stability numerical method. Graphical representations analysis presented verify theoretical results.
منابع مشابه
A Central Difference Numerical Scheme for Fractional Optimal Control Problems
This paper presents a modified numerical scheme for a class of Fractional Optimal Control Problems (FOCPs) formulated in Agrawal (2004) where a Fractional Derivative (FD) is defined in the Riemann-Liouville sense. In this scheme, the entire time domain is divided into several subdomains, and a fractional derivative (FDs) at a time node point is approximated using a modified Grünwald-Letnikov ap...
متن کاملdevelopment and implementation of an optimized control strategy for induction machine in an electric vehicle
in the area of automotive engineering there is a tendency to more electrification of power train. in this work control of an induction machine for the application of electric vehicle is investigated. through the changing operating point of the machine, adapting the rotor magnetization current seems to be useful to increase the machines efficiency. in the literature there are many approaches wh...
15 صفحه اولA nonstandard finite difference scheme for solving fractional-order model of HIV-1 infection of CD4^{+} t-cells
In this paper, we introduce fractional-order into a model of HIV-1 infection of CD4^+ T--cells. We study the effect of the changing the average number of viral particles $N$ with different sets of initial conditions on the dynamics of the presented model. The nonstandard finite difference (NSFD) scheme is implemented to study the dynamic behaviors in the fractional--order HIV-1 ...
متن کاملGRUNWALD-LETNIKOV SCHEME FOR SYSTEM OF CHRONIC MYELOGENOUS LEUKEMIA FRACTIONAL DIFFERENTIAL EQUATIONS AND ITS OPTIMAL CONTROL OF DRUG TREATMENT
In this article, a mathematical model describing the growth orterminating myelogenous leukemia blood cancer's cells against naive T-celland eective T-cell population of body, presented by fractional dierentialequations. We use this model to analyze the stability of the dynamics, whichoccur in the local interaction of eector-immune cell and tumor cells. Wewill also investigate the optimal contro...
متن کاملA numerical method for discrete fractional--order chemostat model derived from nonstandard numerical scheme
In this paper, the fractional--order form of three dimensional chemostat model with variable yields is introduced. The stability analysis of this fractional system is discussed in detail. In order to study the dynamic behaviours of the mentioned fractional system, the well known nonstandard (NSFD) scheme is implemented. The proposed NSFD scheme is compared with the forward Euler and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Modelling and Numerical Simulation with Applications
سال: 2022
ISSN: ['2791-8564', '2791-8564']
DOI: https://doi.org/10.53391/mmnsa.2022.009