An optimal control strategy and Grünwald-Letnikov finite-difference numerical scheme for the fractional-order COVID-19 model

نویسندگان

چکیده

In this article, a mathematical model of the COVID-19 pandemic with control parameters is introduced. The main objective study to determine most effective for predicting transmission dynamic using deterministic variables. For purpose, we introduce three variables reduce number infected and asymptomatic or undiagnosed populations in considered model. Existence necessary optimal conditions are also established. Grünwald-Letnikov non-standard weighted average finite difference method (GL-NWAFDM) developed solving proposed system. Further, prove stability numerical method. Graphical representations analysis presented verify theoretical results.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Central Difference Numerical Scheme for Fractional Optimal Control Problems

This paper presents a modified numerical scheme for a class of Fractional Optimal Control Problems (FOCPs) formulated in Agrawal (2004) where a Fractional Derivative (FD) is defined in the Riemann-Liouville sense. In this scheme, the entire time domain is divided into several subdomains, and a fractional derivative (FDs) at a time node point is approximated using a modified Grünwald-Letnikov ap...

متن کامل

development and implementation of an optimized control strategy for induction machine in an electric vehicle

in the area of automotive engineering there is a tendency to more electrification of power train. in this work control of an induction machine for the application of electric vehicle is investigated. through the changing operating point of the machine, adapting the rotor magnetization current seems to be useful to increase the machines efficiency. in the literature there are many approaches wh...

15 صفحه اول

A nonstandard finite difference scheme for solving‎ ‎fractional-order model of HIV-1 infection of‎ ‎CD4^{+} t-cells

‎In this paper‎, ‎we introduce fractional-order into a model of HIV-1 infection of CD4^+ T--cells‎. ‎We study the effect of ‎the changing the average number of viral particles $N$ with different sets of initial conditions on the dynamics of‎ ‎the presented model‎. ‎ ‎The nonstandard finite difference (NSFD) scheme is implemented‎ ‎to study the dynamic behaviors in the fractional--order HIV-1‎ ‎...

متن کامل

GRUNWALD-LETNIKOV SCHEME FOR SYSTEM OF CHRONIC MYELOGENOUS LEUKEMIA FRACTIONAL DIFFERENTIAL EQUATIONS AND ITS OPTIMAL CONTROL OF DRUG TREATMENT

In this article, a mathematical model describing the growth orterminating myelogenous leukemia blood cancer's cells against naive T-celland eective T-cell population of body, presented by fractional dierentialequations. We use this model to analyze the stability of the dynamics, whichoccur in the local interaction of eector-immune cell and tumor cells. Wewill also investigate the optimal contro...

متن کامل

A numerical method for discrete fractional--order chemostat model derived from nonstandard numerical scheme

‎In this paper‎, ‎the fractional--order form of three dimensional chemostat model with variable yields is introduced‎. ‎The stability analysis of this fractional system is discussed in detail‎. ‎In order to study the dynamic behaviours of the mentioned fractional system‎, ‎the well known nonstandard (NSFD) scheme is implemented‎. ‎The proposed NSFD scheme is compared with the forward Euler and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Modelling and Numerical Simulation with Applications

سال: 2022

ISSN: ['2791-8564', '2791-8564']

DOI: https://doi.org/10.53391/mmnsa.2022.009